首页> 外文OA文献 >Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power
【2h】

Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power

机译:在钙循环条件下热预处理和纳米二氧化硅的添加对聚光太阳能热化学能存储中石灰石性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The share of renewable energies is growing rapidly, partly in response to the urgent need for mitigating CO emissions from fossil fuel power plants. However, cheap and efficient large-scale energy storage technologies are not yet available to allow for a significant penetration of renewable energies into the grid. Recently, a potentially low-cost and efficient thermochemical energy storage (TCES) system has been proposed, based on the integration of the calcium-looping (CaL) process into concentrated solar power plants (CSPs). The CaL process relies on the multicycle carbonation/calcination of CaO, which can be derived from calcination of widely available, cheap, and nontoxic natural limestone (CaCO). This work explores the effect on the multicycle activity of limestone-derived CaO of thermal pretreatment under diverse atmospheres and the addition of nanosilica, which would be expected to hinder CaO grain sintering. Importantly, optimum CaL conditions for CSP energy storage differ radically from those used in the application of the CaL process for CO capture. Thus, calcination should be ideally carried out under low CO partial pressure at moderate temperature (below 750°C), whereas CO concentration and temperature should be high for carbonation in order to maximize thermoelectric efficiency. When limestone is subjected to carbonation/calcination cycles at these conditions, its performance is critically dependent on the type of pretreatment. Our results indicate that the multicycle CaO activity is correlated with the size of the particles and the CaO pore size distribution. Thus, CaO activity is impaired as particle size is increased and/or CaO pore size is decreased. These observations suggest that pore plugging poses a main limitation to the multicycle performance of limestone-derived CaO at the optimum CaL conditions for TCES in CSPs, which is supported by scanning electron microscopy analysis. Strategies to enhance the performance of natural limestone at these conditions should be therefore oriented toward minimizing pore plugging rather than CaO grain sintering, which stands as the main limitation at CaL conditions for CO capture.
机译:可再生能源的份额正在迅速增长,部分原因是迫切需要减少化石燃料发电厂的CO排放。但是,尚无廉价,高效的大规模储能技术来使可再生能源大量渗透到电网中。最近,基于将钙环化(CaL)过程集成到集中式太阳能发电厂(CSP)中的技术,已经提出了一种潜在的低成本高效热化学能量存储(TCES)系统。 CaL工艺依赖于CaO的多周期碳化/煅烧,而CaO可以通过煅烧广泛获得,廉价且无毒的天然石灰石(CaCO)获得。这项工作探讨了在多种气氛下以及纳米二氧化硅的添加对热预处理石灰石衍生的CaO的多循环活性的影响,这有望阻碍CaO晶粒的烧结。重要的是,用于CSP能量存储的最佳CaL条件与用于CO捕集的CaL工艺应用中使用的条件根本不同。因此,理想的是煅烧应在适度的温度(低于750°C)下在低的CO分压下进行,而CO的浓度和温度对于碳酸化应较高,以使热电效率最大化。在这些条件下对石灰石进行碳酸化/煅烧循环时,其性能关键取决于预处理的类型。我们的结果表明,多周期CaO活性与颗粒尺寸和CaO孔径分布相关。因此,随着粒径的增加和/或CaO孔径的减小,CaO活性受到损害。这些观察结果表明,在扫描电子显微镜分析的支持下,在用于CSP的TCES的最佳CaL条件下,孔堵塞对石灰石衍生的CaO的多循环性能构成了主要限制。因此,在这些条件下提高天然石灰石性能的策略应以最小化孔堵塞而不是CaO晶粒烧结为导向,CaO烧结是CaL条件下捕获CO的主要限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号